Error & Exception Handling
Error handling is the process of catching errors raised by your program and then taking appropriate action. If you would handle errors properly then it may lead to many unforeseen consequences.
It’s very simple in PHP to handle an error.
Using die() function
While writing your PHP program you should check all possible error condition before going ahead and take appropriate action when required.
Try following example without having /tmp/test.xt file and with this file.
	[bookmark: _Hlk74515368]Line
	Code

	1
2
3
4
5
6
7
8
9
	<?php
 if(!file_exists("/tmp/test.txt")) {
 die("File not found");
 }else {
 $file = fopen("/tmp/test.txt","r");
 print "Opend file sucessfully";
 }
 // Test of the code here.
?>

This way you can write an efficient code. Using above technique you can stop your program whenever it errors out and display more meaningful and user friendly message.
Defining Custom Error Handling Function
You can write your own function to handling any error. PHP provides you a framework to define error handling function.
This function must be able to handle a minimum of two parameters (error level and error message) but can accept up to five parameters (optionally: file, line-number, and the error context):
Syntax
error_function(error_level,error_message,
 error_file,error_line,error_context);
	No.
	Parameter & Description

	1
	error_level
Required - Specifies the error report level for the user-defined error. Must be a value number.

	2
	error_message
Required - Specifies the error message for the user-defined error

	3
	error_file
Optional - Specifies the file name in which the error occurred

	4
	error_line
Optional - Specifies the line number in which the error occurred

	5
	error_context
Optional - Specifies an array containing every variable and their values in use when the error occurred

Possible Error levels
These error report levels are the different types of error the user-defined error handler can be used for. These values cab used in combination using | operator
	No.
	Constant & Description
	Value

	1
	.E_ERROR
Fatal run-time errors. Execution of the script is halted
	1

	2
	E_WARNING
Non-fatal run-time errors. Execution of the script is not halted
	2

	3
	E_PARSE
Compile-time parse errors. Parse errors should only be generated by the parser.
	4

	4
	E_NOTICE
Run-time notices. The script found something that might be an error, but could also happen when running a script normally
	8

	5
	E_CORE_ERROR
Fatal errors that occur during PHP's initial start-up.
	16

	6
	E_CORE_WARNING
Non-fatal run-time errors. This occurs during PHP's initial start-up.
	32

	7
	E_USER_ERROR
Fatal user-generated error. This is like an E_ERROR set by the programmer using the PHP function trigger_error()
	256

	8
	E_USER_WARNING
Non-fatal user-generated warning. This is like an E_WARNING set by the programmer using the PHP function trigger_error()
	512

	9
	E_USER_NOTICE
User-generated notice. This is like an E_NOTICE set by the programmer using the PHP function trigger_error()
	1024

	10
	E_STRICT
Run-time notices. Enable to have PHP suggest changes to your code which will ensure the best interoperability and forward compatibility of your code.
	2048

	11
	E_RECOVERABLE_ERROR
Catchable fatal error. This is like an E_ERROR but can be caught by a user defined handle (see also set_error_handler())
	4096

	12
	E_ALL
All errors and warnings, except level E_STRICT (E_STRICT will be part of E_ALL as of PHP 6.0)
	8191

All the above error level can be set using following PHP built-in library function where level cab be any of the value defined in above table.
int error_reporting ([int $level])
Following is the way you can create one error handling function:
	Line
	Code

	1
2
3
4
5
6
7
8
9
	<?php
 function handleError($errno, $errstr,$error_file,$error_line) {
 echo "Error: [$errno] $errstr - $error_file:$error_line";
 echo "
";
 echo "Terminating PHP Script";

 die();
 }
?>

Once you define your custom error handler you need to set it using PHP built-in library set_error_handler function. Now lets examine our example by calling a function which does not exist.
	Line
	Code

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
	<?php
 error_reporting(E_ERROR);

 function handleError($errno, $errstr,$error_file,$error_line) {
 echo "Error: [$errno] $errstr - $error_file:$error_line";
 echo "
";
 echo "Terminating PHP Script";

 die();
 }

 //set error handler
 set_error_handler("handleError");

 //trigger error
 myFunction();
?>

Exceptions Handling
PHP has an exception model similar to that of other programming languages. Exceptions are important and provides a better control over error handling.
Let’s explain their new keyword related to exceptions.
· Try − A function using an exception should be in a "try" block. If the exception does not trigger, the code will continue as normal. However, if the exception triggers, an exception is "thrown".
· Throw − This is how you trigger an exception. Each "throw" must have at least one "catch".
· Catch − A "catch" block retrieves an exception and creates an object containing the exception information.
When an exception is thrown, code following the statement will not be executed, and PHP will attempt to find the first matching catch block. If an exception is not caught, a PHP Fatal Error will be issued with an "Uncaught Exception ...
· An exception can be thrown, and caught ("catched") within PHP. Code may be surrounded in a try block.
· Each try must have at least one corresponding catch block. Multiple catch blocks can be used to catch different classes of exceptions.
· Exceptions can be thrown (or re-thrown) within a catch block.
Example
Following is the piece of code, copy and paste this code into a file and verify the result.
	Line
	Code

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
	<?php
 try {
 $error = 'Always throw this error';
 throw new Exception($error);

 // Code following an exception is not executed.
 echo 'Never executed';
 }catch (Exception $e) {
 echo 'Caught exception: ', $e->getMessage(), "\n";
 }

 // Continue execution
 echo 'Hello World';
?>

In the above example $e->getMessage function is used to get error message. There are following functions which can be used from Exception class.
· getMessage() − message of exception
· getCode() − code of exception
· getFile() − source filename
· getLine() − source line
· getTrace() − n array of the backtrace()
· getTraceAsString() − formated string of trace
Creating Custom Exception Handler
You can define your own custom exception handler. Use following function to set a user-defined exception handler function.
string set_exception_handler (callback $exception_handler)
Here exception_handler is the name of the function to be called when an uncaught exception occurs. This function must be defined before calling set_exception_handler().
Example
	Line
	Code

	1
2
3
4
5
6
7
8
9
10
	<?php
 function exception_handler($exception) {
 echo "Uncaught exception: " , $exception->getMessage(), "\n";
 }
	
 set_exception_handler('exception_handler');
 throw new Exception('Uncaught Exception');

 echo "Not Executed\n";
?>

Error & Logging Functions
These are functions dealing with error handling and logging. They allow you to define your own error handling rules, as well as modify the way the errors can be logged. This allows you to change and enhance error reporting to suit your needs.
Using these logging functions, you can send messages directly to other machines, to an email, to system logs, etc., so you can selectively log and monitor the most important parts of your applications and websites.
Runtime Configuration
The behavior of these functions is affected by settings in php.ini. These settings are defined below.
	Name
	Default
	Changeable
	Changelog

	error_reporting
	NULL
	PHP_INI_ALL
	

	display_errors
	"1"
	PHP_INI_ALL
	

	display_startup_errors
	"0"
	PHP_INI_ALL
	Available since PHP 4.0.3.

	log_errors
	"0"
	PHP_INI_ALL
	

	log_errors_max_len
	"1024"
	PHP_INI_ALL
	Available since PHP 4.3.0.

	ignore_repeated_errors
	"0"
	PHP_INI_ALL
	Available since PHP 4.3.0.

	ignore_repeated_source
	"0"
	PHP_INI_ALL
	Available since PHP 4.3.0.

	report_memleaks
	"1"
	PHP_INI_ALL
	Available since PHP 4.3.0.

	track_errors
	"0"
	PHP_INI_ALL
	

	html_errors
	"1"
	PHP_INI_ALL
	PHP_INI_SYSTEM in PHP <= 4.2.3. Available since PHP 4.0.2.

	docref_root
	""
	PHP_INI_ALL
	Available since PHP 4.3.0.

	docref_ext
	""
	PHP_INI_ALL
	Available since PHP 4.3.2.

	error_prepend_string
	NULL
	PHP_INI_ALL
	

	error_append_string
	NULL
	PHP_INI_ALL
	

	error_log
	NULL
	PHP_INI_ALL
	

	warn_plus_overloading
	NULL
	
	This option is no longer available as of PHP 4.0.0

PHP Error and Logging Constants
PHP − indicates the earliest version of PHP that supports the constant.
You can use any of the constant while configuring your php.ini file.
	Value
	Constant & Description
	PHP

	1
	E_ERROR
Fatal run-time errors. Errors that cannot be recovered from. Execution of the script is halted
	

	2
	E_WARNING
Non-fatal run-time errors. Execution of the script is not halted
	

	4
	E_PARSE
Compile-time parse errors. Parse errors should only be generated by the parser
	

	8
	E_NOTICE
Run-time notices. The script found something that might be an error, but could also happen when running a script normally
	

	16
	E_CORE_ERROR
Fatal errors at PHP startup. This is like an E_ERROR in the PHP core
	4

	32
	E_CORE_WARNING
Non-fatal errors at PHP startup. This is like an E_WARNING in the PHP core
	4

	64
	E_COMPILE_ERROR
Fatal compile-time errors. This is like an E_ERROR generated by the Zend Scripting Engine
	4

	128
	E_COMPILE_WARNING
Non-fatal compile-time errors. This is like an E_WARNING generated by the Zend Scripting Engine
	4

	256
	E_USER_ERROR
Fatal user-generated error. This is like an E_ERROR set by the programmer using the PHP function trigger_error()
	4

	512
	E_USER_WARNING
Non-fatal user-generated warning. This is like an E_WARNING set by the programmer using the PHP function trigger_error()
	4

	1024
	E_USER_NOTICE
User-generated notice. This is like an E_NOTICE set by the programmer using the PHP function trigger_error()
	4

	2048
	E_STRICT
Run-time notices. PHP suggest changes to your code to help interoperability and compatibility of the code
	5

	4096
	E_RECOVERABLE_ERROR
Catchable fatal error. This is like an E_ERROR but can be caught by a user defined handle (see also set_error_handler())
	5

	8191
	E_ALL
All errors and warnings, except of level E_STRICT
	5

List of Functions
PHP − indicates the earliest version of PHP that supports the function.
	No
	Advanced & Description
	PHP

	1
	debug_backtrace()
Generates a backtrace
	4

	2
	debug_print_backtrace()
Prints a backtrace
	5

	3
	error_get_last()
Gets the last error occurred
	5

	4
	error_log()
Sends an error to the server error-log, to a file or to a remote destination
	4

	5
	error_reporting()
Specifies which errors are reported
	4

	6
	restore_error_handler()
Restores the previous error handler
	4

	7
	restore_exception_handler()
Restores the previous exception handler
	5

	8
	set_error_handler()
Sets a user-defined function to handle errors
	4

	9
	set_exception_handler()
Sets a user-defined function to handle exceptions
	5

	10
	trigger_error()
Creates a user-defined error message
	4

	11
	user_error()
Alias of trigger_error()
	4

Bugs Debugging
Programs rarely work correctly the first time. Many things can go wrong in your program that cause the PHP interpreter to generate an error message. You have a choice about where those error messages go. The messages can be sent along with other program output to the web browser. They can also be included in the web server error log.
To make error messages display in the browser, set the display_errors configuration directive to On. To send errors to the web server error log, set log_errors to On. You can set them both to On if you want error messages in both places.
PHP defines some constants you can use to set the value of error_reporting such that only errors of certain types get reported: E_ALL (for all errors except strict notices), E_PARSE (parse errors), E_ERROR (fatal errors), E_WARNING (warnings), E_NOTICE (notices), and E_STRICT (strict notices).
While writing your PHP program, it is a good idea to use PHP-aware editors like BBEdit or Emacs. One of the special special features of these editors is syntax highlighting. It changes the color of different parts of your program based on what those parts are. For example, strings are pink, keywords such as if and while are blue, comments are grey, and variables are black.
Another feature is quote and bracket matching, which helps to make sure that your quotes and brackets are balanced. When you type a closing delimiter such as }, the editor highlights the opening { that it matches.
There are following points which need to be verified while debugging your program.
· Missing Semicolons − Every PHP statement ends with a semicolon (;). PHP doesn't stop reading a statement until it reaches a semicolon. If you leave out the semicolon at the end of a line, PHP continues reading the statement on the following line.
· Not Enough Equal Signs − When you ask whether two values are equal in a comparison statement, you need two equal signs (==). Using one equal sign is a common mistake.
· Misspelled Variable Names − If you misspelled a variable then PHP understands it as a new variable. Remember: To PHP, $test is not the same variable as $Test.
· Missing Dollar Signs − A missing dollar sign in a variable name is really hard to see, but at least it usually results in an error message so that you know where to look for the problem.
· Troubling Quotes − You can have too many, too few, or the wrong kind of quotes. So check for a balanced number of quotes.
· Missing Parentheses and curly brackets − They should always be in pairs.
· Array Index − All the arrays should start from zero instead of 1.
Moreover, handle all the errors properly and direct all trace messages into system log file so that if any problem happens then it will be logged into system log file and you will be able to debug that problem.

Page | 2

